

Rodrigo Costa-Felix Laboratório de Ultrassom do Inmetro

A metrologia

- Sem metrologia, a vida é inviável em todos os seus aspectos sociais e econômicos
- Segundo Lord Kelvin (1824-1907), cientista britânico nascido na Irlanda:

"Quando você pode medir e expressar em números, você sabe algo sobre o assunto; mas quando você não consegue expressar em números, seu conhecimento é escasso e insatisfatório."

"When you can measure what you are speaking about and express it in numbers you know something about it; but when you cannot express it in numbers your knowledge is of a meagre and unsatisfactory kind."

MEDIÇÃO É A ESSÊNCIA DO <u>LUCRO SOCIAL</u>

Grandezas

• Grandezas de base

Grandeza de base		Símbolo da
Nome	Símbolo	dimensão
comprimento	<i>L</i> , <i>l</i> , <i>x</i> , <i>r</i> , <i>etc</i>	L
massa	m	M
tempo	t	T
corrente elétrica	I, i	I
temperatura termodinâmica	T	Θ
quantidade de substância	n	N
intensidade luminosa	I_{v}	J

Grandezas derivadas (Q): dim Q = $L^{\alpha}M^{\beta}T^{\gamma}I^{\delta}\Theta^{\epsilon}N^{\zeta}J^{\eta} \rightarrow$ expoentes são números inteiros pequenos

Unidades do SI

• Sistema Internacional de Unidades (SI)

Grandeza de base	Unidade de base	
Nome	Nome	Símbolo
comprimento	metro	m
massa	quilograma	kg
tempo	segundo	S
corrente elétrica	ampere	A
temperatura termodinâmica	kelvin	K
quantidade de substância	mol	mol
intensidade luminosa	candela	cd

Unidades do SI

• Múltiplos e submúltiplos

Fator	Prefixo	
	Nome	Símbolo
10 ²⁴	yotta	Y
10 ²¹	zetta	Z
10^{18}	exa	Е
10^{15}	peta	P
1012	tera	Т
10 ⁹	giga	G
10^{6}	mega	M
10^{3}	quilo	k
10^{2}	hecto	h
10 ¹	deca	da

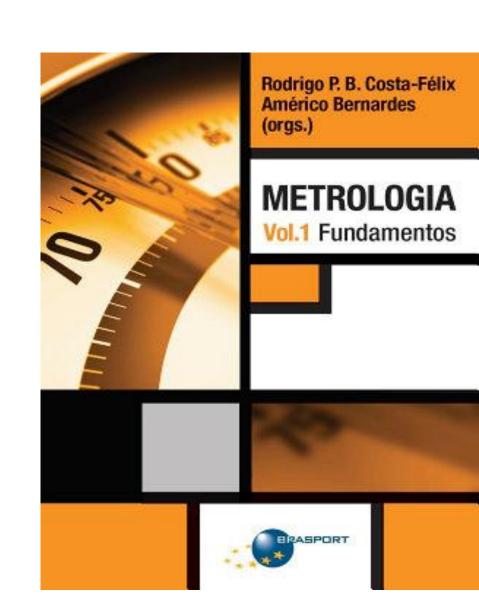
Fator	Prefixo	
	Nome	Símbolo
10-1	deci	d
10-2	centi	c
10-3	mili	m
10-6	micro	μ
10 ⁻⁹	nano	n
10-12	pico	p
10 ⁻¹⁵	femto	f
10-18	atto	a
10-21	zepto	Z
10-24	yocto	у

Definindo a METROLOGIA

- Metrologia: ciência da medição e suas aplicações.
 - A metrologia engloba todos os aspectos <u>teóricos</u> e <u>práticos</u> da medição, qualquer que seja a <u>incerteza de</u> <u>medição</u> e o <u>campo de aplicação</u>
- Quem estuda os princípios físicos da natureza pratica metrologia
- Quem desenvolve um método ou procedimento de medição pratica metrologia
- Quem realiza uma medição pratica metrologia
- Quem usa os resultados de uma medição pratica metrologia
- Quem toma decisões legais com base em um resultado de medição pratica metrologia
 - Autuação ou "multa" por excesso de velocidade de um veículo ou de carga de um caminhão, por exemplo

Vocabulário Internacional de Metrologia

- 1ª Edição Luso-Brasileira
 - Equivale ao JCGM 200:2012
 - http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
- Baseada na 2ª Edição Brasileira (2009)
- Portaria Inmetro nº 232 de 08/Mai/2012
 - http://www.inmetro.gov.br/infotec/publicacoes/vim_2012.pdf
- Autores
 - Brasil: Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro)
 - Portugal: Instituto Português da Qualidade (IPQ)



Conceitos em metrologia

- Metrologia Vol.1: Fundamentos
 - COSTA-FELIX, R.P.B.; BERNARDES, A.T. (Org.). Metrologia Vol. 1: Fundamentos. 1a. ed. Rio de Janeiro: Brasport, 2017. 350 p.
 - ISBN 978-85-7452-834-2 (impresso)
 - ISBN 978-85-7452-835-9 (e-book)

- Disponível no Google Play, na Amazon, na Saraiva etc.
- 15 capítulos sobre diversos temas relacionados à metrologia (VIM, SIM, incerteza de medição, metrologia legal, história da metrologia, AC, PI etc.)

Lucro social

- OFICINA DE LUCRO SOCIAL. Ferramenta de transparência e gestão no setor público.
 - OZANAN, BALLERINI e COSTA-FELIX. 1a. ed. Rio de Janeiro: Amazon, 2021. 134 p.
 - ISBN 979-8-51-051755-2 (impresso)
 - ASIN B095XNTXRL (eBook Kindle)

Disponível na Amazon

Definindo a METROLOGIA

- Metrologia: ciência da medição e suas aplicações.
 - A metrologia engloba todos os aspectos teóricos e práticos da medição, qualquer que seja a incerteza de medição e o campo de aplicação.

As únicas certezas que se pode ter ao fazer uma medição é que o resultado trará um erro e terá uma incerteza associada

 O trabalho do metrologista é (tentar) quantificar o erro, (tentar) estimar a incerteza da medição e (tentar) fazê-los compatíveis com o <u>uso pretendido</u> do resultado da medição

INCERTEZA DE MEDIÇÃO e ERRO DE MEDIÇÃO

Incerteza e Erro

- <u>Incerteza de medição</u>: parâmetro não negativo que caracteriza a <u>dispersão dos valores</u> atribuídos a um mensurando, com base nas informações utilizadas.
 - A incerteza é gerada por (possíveis) variações dos resultados das medições realizadas
- Erro de medição: diferença entre o valor medido duma grandeza e um valor de referência
 - O erro está relacionado com o resultado final da medição (média de várias medições, por exemplo)
- <u>Valor de referência</u>: valor duma grandeza utilizado como base para comparação com valores de grandezas da mesma natureza
 - O valor de referência pode ser um valor verdadeiro dum mensurando, sendo nesse caso desconhecido
 - Caso seja um valor convencional, ele é conhecido

Incerteza

- Falta de conhecimento completo do mensurando
 - Modelo matemático incompleto
 - Influência das condições climáticas (ambientais) desconhecida ou imprevisível
- Instrumento de medição não apropriado (resolução, estabilidade, linearidade etc)
 - O instrumento de medição deve ser selecionado em função do uso pretendido
 - Necessária <u>calibração</u> do instrumento
- Pouca habilidade ou escasso treinamento do técnico executor
- Diversos outros fatores podem influenciar a dispersão dos resultados de medição e, em consequência, a <u>estimativa da incerteza de medição</u>

Incerteza – Influência do instrumento

• <u>Tarefa</u>: medir o comprimento de um lápis

• Possíveis instrumentos de medição

Incerteza – Influência do instrumento

Características principais de cada instrumento

Palmo

Fácil de usar

Gratuito

Disponível a todo instante

Pouca resolução

Simples de usar

Barato

Boa resolução (1 mm)

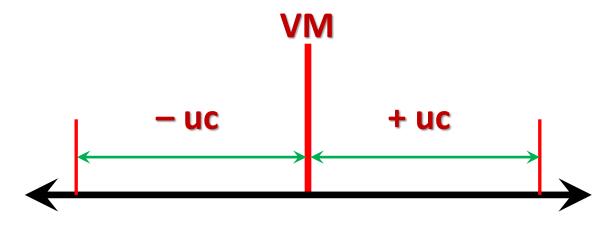
Uso amador

Utilização complexa

Caro

Ótima resolução (10 µm)

Uso profissional


QUAL É O MELHOR INSTRUMENTO DE MEDIÇÃO?

DEPENDE DO <u>USO PRETENDIDO</u> DO RESULTADO DA MEDIÇÃO

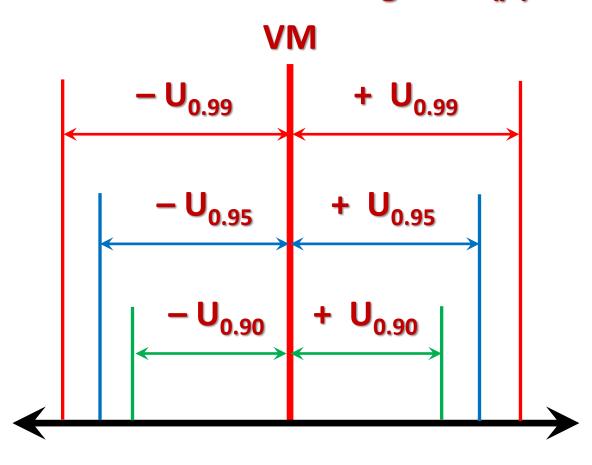
Representado a incerteza de uma medição

- Dispersão em torno de um resultado
 - Medições repetidas → resultado da medição é um valor médio
 - Quanto maior o número de repetições, mas "preciso" será o resultado e mais "caro" será o procedimento
 - A dispersão pode ser calculada por "desvio padrão da média"
 - Valor da Medição (valor medido) → VM
 - Incerteza combinada → uc

Incerteza expandida (U)

- Aumenta a probabilidade do valor verdadeiro estar compreendido entre (VM ± U)
 - Probabilidade de abrangência $\rightarrow p$
 - Fator de abrangência $\rightarrow k$
 - $U = k \cdot uc$

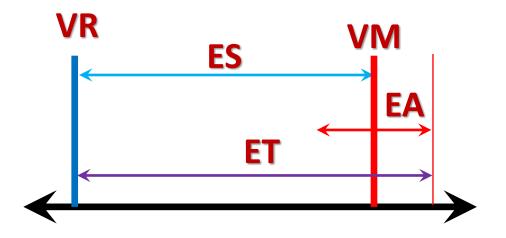
VALORES TÍPICOS DE *k*


(distribuição normal bicaudal)

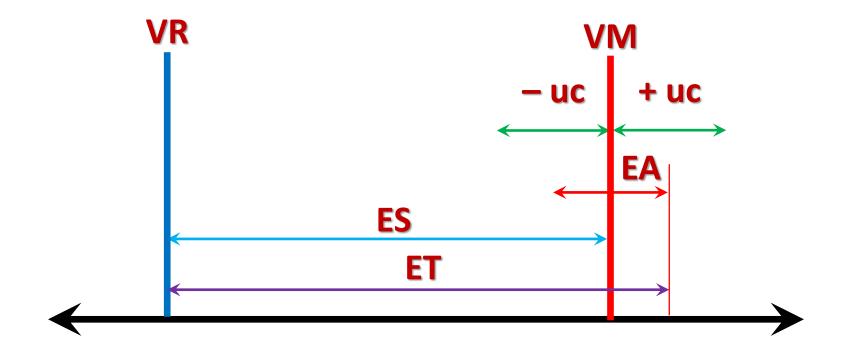
$$p = 0.90 \rightarrow k = 1.64$$

$$p = 0.95 \rightarrow k = 1.96$$

$$p = 0.99 \rightarrow k = 2.58$$


Probabilidade de abrangência (p)

Erro (tendência)


- Diferença entre o valor medido (VM) e o valor de referência (VR)
 - O valor de referência pode ser um valor verdadeiro convencional (VVC) ou um valor verdadeiro (VV)
 - O VV é <u>desconhecido</u> (por definição)
 - Há erro aleatório (EA) e erro sistemático (ES) tal que Erro Total (ET) = ES + EA

Representado a incerteza e o erro

• Resultado completo de uma medição

Fundamentos da estatística 🗪 média

Valor esperado ou medida de tendência central de uma variável aleatória

Média Aritmética

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} (x_i) = \frac{(x_1 + x_2 + \dots + x_n)}{n}$$

Média Geométrica

$$\overline{x_G} = \left[\prod_{i=1}^n (x_i)\right]^{\frac{1}{n}} = (x_1 \times x_2 \times \dots \times x_n)^{\frac{1}{n}}$$

Média Ponderada

$$\overline{x_{P}} = \frac{\sum_{i=1}^{n} (w_{i}x_{i})}{\sum_{i=1}^{n} (w_{i})} = \frac{(w_{1}x_{1} + w_{1}x_{2} + \dots + w_{n}x_{n})}{(w_{1} + w_{2} + \dots + w_{n})} \qquad \overline{x_{H}} = \frac{n}{\sum_{i=1}^{n} \left(\frac{1}{x_{i}}\right)} = \frac{n}{\left(\frac{1}{x_{1}} + \frac{1}{x_{2}} + \dots + \frac{1}{x_{n}}\right)}$$

Média Harmônica

$$\overline{x_H} = \frac{n}{\sum_{i=1}^n \left(\frac{1}{x_i}\right)} = \frac{n}{\left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}\right)}$$

Fundamentos da estatística - desvio padrão

Desvio padrão da população

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Desvio padrão amostral

$$s = \sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

• Desvio padrão de variável aleatória contínua

$$\sigma = \sqrt{\int\limits_{\mathbb{R}} (x - \mu)^2 p(x) dx}; \quad \mu = \int\limits_{\mathbb{R}} x p(x) dx$$

n = 30
$$\rightarrow \sigma \cong 0.97 \times s$$

n = 50 $\rightarrow \sigma \cong 0.98 \times s$
n = 100 $\rightarrow \sigma \cong 0.99 \times s$

Avaliação da conformidade

- Avaliação de conformidade: atividade para determinar se os requisitos especificados relativos a um produto, processo, sistema, pessoa ou organismo (de AC) são satisfeitos
 - BIPM JCGM 106:2012 Evaluation of measurement data The role of measurement uncertainty in conformity assessment
- Os requisitos especificados podem ser
 - O "peso" (deslocamento) mínimo de um veleiro de competição em determinada classe
 - A carga máxima que um caminhão pode suportar por eixo para garantir a segurança do tráfego rodoviário
 - A quantidade (mínima e máxima) de glicose no sangue para o paciente ser considerado saudável
 - A quantidade de álcool no sangue para ser imputada responsabilidade criminal ao motorista
 - A velocidade mínima para um avião decolar em segurança em função do seu deslocamento ("peso")
 - A velocidade máxima permitida em uma determinada rodovia para minimizar riscos de acidente

Tolerância (de projeto ou requisitos da qualidade)

- Nos regulamentos que envolvem aspectos metrológicos, os valores limites (máximos ou mínimos) da grandeza de interesse são chamados de "tolerância"
- A tolerância não é "erro máximo admissível", este sendo uma característica do sistema de medição e depende do procedimento de medição e da realização da medição (capacitação do técnico executor, condições ambientais, calibração do sistema de medição etc.)

A AVALIAÇÃO DA CONFORMIDADE DEVE LEVAR EM CONTA A <u>TOLERÂNCIA</u> DO REQUISITO REGULADO E DO <u>RESULTADO</u> DA MEDIÇÃO, PORTANTO DO <u>VALOR</u> DA GRANDEZA MEDIDA E DA <u>INCERTEZA</u> DE MEDIÇÃO ASSOCIADA AO <u>RESULTADO</u> DA MEDIÇÃO

Risco do Consumidor e Risco do Produtor

- Risco (específico) do Consumidor é a probabilidade de itens não conformes serem aceitos durante os ensaios de avaliação da conformidade
 - Risco à saúde, ao meio ambiente, à segurança e à qualidade de vida da população etc.
 - Também chamado de "falso positivo" na área da saúde
- Risco (específico) do Produtor é a probabilidade de itens em conformidade serem rejeitados durante o teste
 - Prejuízo financeiro direto, retrabalho, desperdício de material etc.
 - Conhecido como "falso negativo" na área da saúde
 - O "produtor" pode ser entendido como Agente do Estado responsável por uma regulação específica ou por fiscalização metrológica dos requisitos

Fontes: NASA-Handbook 8739.19-4; BIPM JCGM 106:2012

Tabela de contingência de risco

Matriz de probabilidade para tomada de decisão

CONFORME

CEITC

Probabilidade de ser **aprovado** no ensaio de AC

NÃO CONFORME

Probabilidade de ser **aprovado** no ensaio de AC

Risco do Consumidor

(falso positivo)

REJEITADO

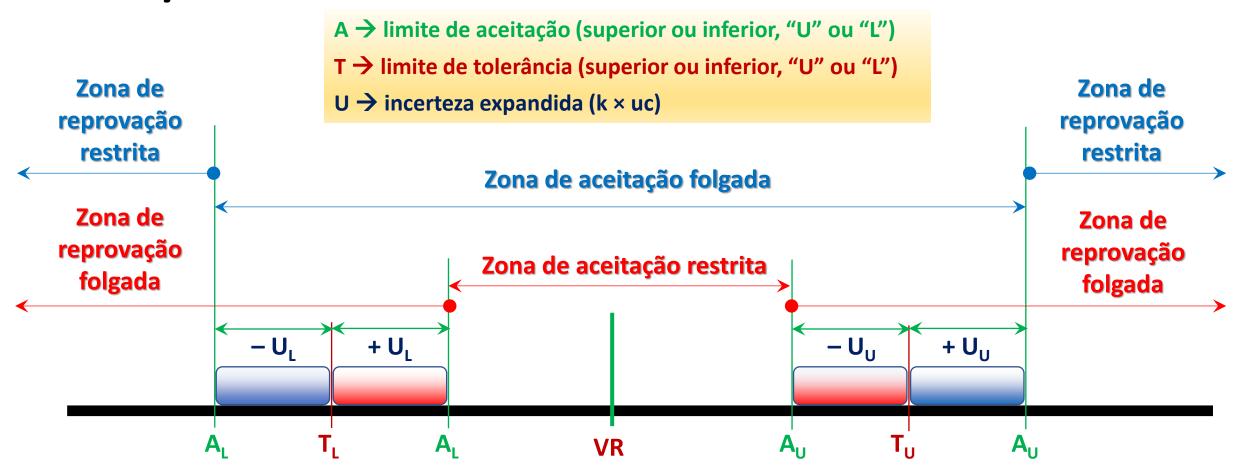
Probabilidade de ser reprovado no ensaio de AC

Risco do Produtor (falso negativo)

Probabilidade de ser **reprovado** no ensaio de AC

Modelo para reduzir os riscos em AC

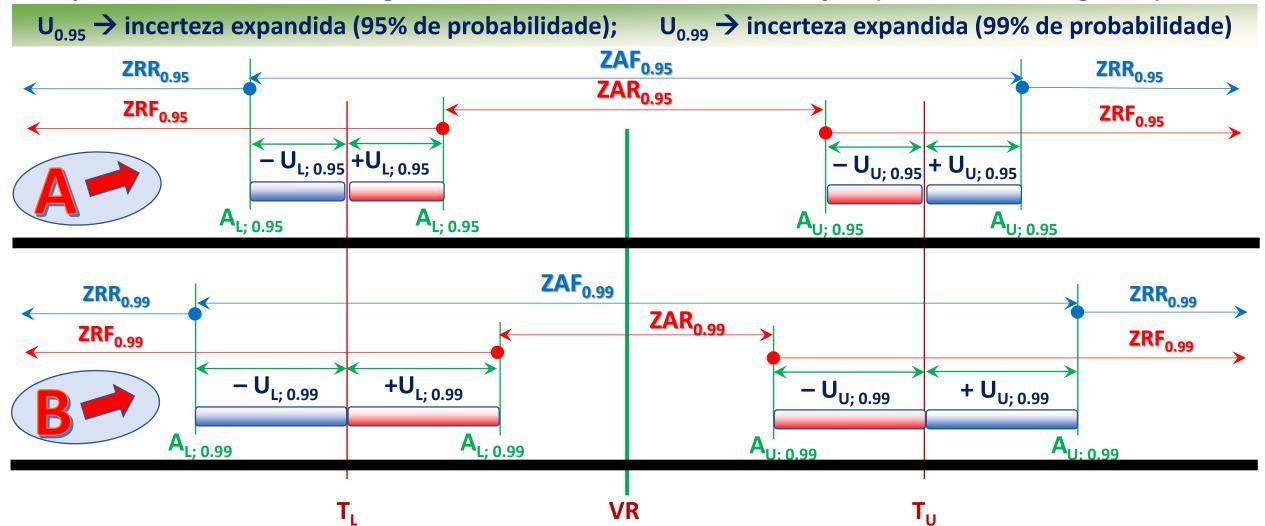
"Essencialmente, todos os modelos estão errados, mas alguns podem ser úteis"


George Box

- Mesmo assim (ou por isso mesmo), vamos estudar um modelo de análise de risco em AC
 - Usando estatística
 - Usando a incerteza de medição
 - Calculando os riscos do consumidor e do produtor (ou do agente regulador)

Limites de tolerância e de aceitação

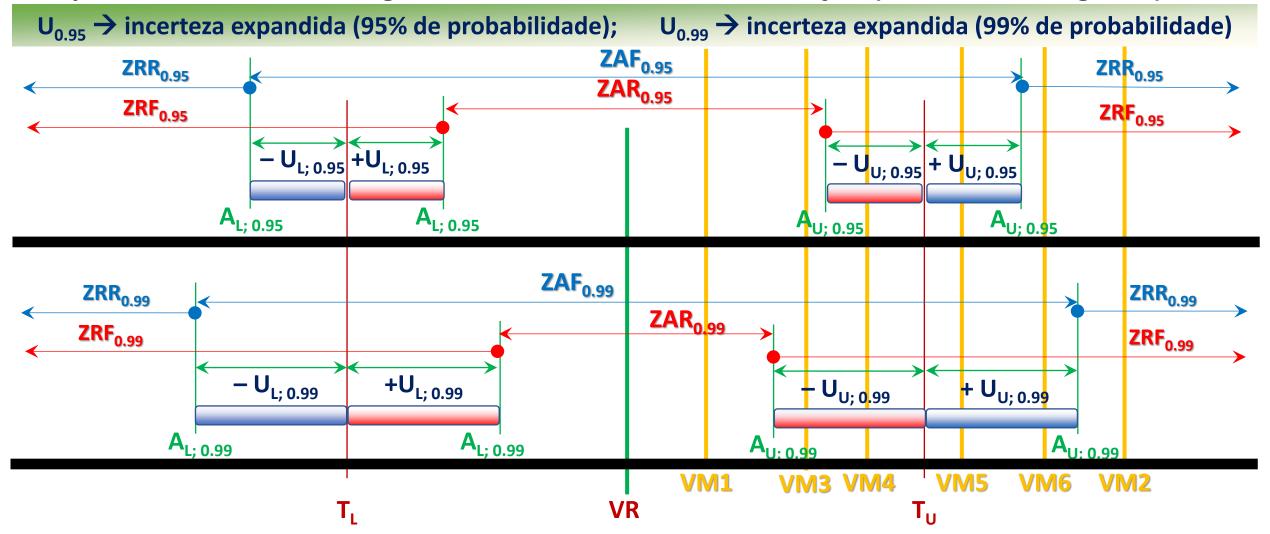
• Limites de aceitação são parte fundamental para adotar critérios de tomada de decisão em avaliação da conformidade



Os riscos do consumidor e do produtor variam!

Isso é culpa da incerteza ... e da confiança!!

• A probabilidade de abrangência define os limites de aceitação (restritos ou folgados)



Os riscos do consumidor e do produtor variam!

Isso é culpa da incerteza ... e da confiança!!

• A probabilidade de abrangência define os limites de aceitação (restritos ou folgados)

A metrologia e a econometria

"Embora às vezes se afirme que as medições 'não agregam valor', isso só é verdade no caso de, *a priori*, haver 100% de certeza de que todos os componentes são produzidos dentro da especificação."

Phillips, S.D.; Baldwin, J; Estler, W.T. Economics of measurement uncertainty and tolerances. In: Proceedings of the ASPE 2009 Summer Topical Meeting: The Economies of Precision Engineering, 2009

• Exemplo: um radar após um quebra mola bem "dimensionado" é desnecessário para medir se a velocidade está acima de um determinado limite

- Grandeza: velocidade de um veículo em uma via pública
- Unidade: km/h (aceita no SI embora não seja originária das grandezas de base)
- Instrumento de medição: medidor de velocidade de veículos automotores (ex.: radar)

• Incerteza de medição: [Caso 1: uc = 1%] [Caso 2: uc = 2%] [Caso 3: uc = 5%]

• Risco do consumidor: [Caso 1: $\overline{p_c} = 1\%$] [Caso 2: $\overline{p_c} = 0.1\%$]

• Tabela de probabilidade de conformidade e não conformidade

p_c	$\overline{p_c} \ (1-p_c)$	z (ou k) (single tailed)
0,80	0,20	0,84
0,90	0,10	1,28
0,95	0,05	1,64
0,99	0,01	2,33
0,999	0,001	3,09

• Risco do consumidor: $R_c = (1 - p_c) = \overline{p_c}$

Fonte: BIMP JCGM 106:2012

Modelo matemático

$$z = \frac{VM - T_U}{uc \cdot VM}$$

$$VM = \frac{T_U}{1 - uc \cdot z}$$

- z

 estatística t-Student normalizada
- VM → valor medido (velocidade do veículo)
- $T_U \rightarrow$ limite de velocidade na via pública
- uc → incerteza de instrumento de medição empregado para medir VM

• Calculando a velocidade máxima permitida

• VM é a mínima velocidade medida para que se possa assegurar que menos 1 autuação em 100 ($\overline{p_c}=0.01=1\%$) ou 1 autuação em 1000 ($\overline{p_c}=0.001=0.1\%$) será aplicada <u>erroneamente</u>

CASO A: $T_U = 100 \text{ km/h}$	$\overline{p_c} = 1\% \rightarrow z = 2,33$	$\overline{p_c} = 0,1\% \Rightarrow z = 3,09$
uc = 1%	$VM = \frac{100}{1 - 0.01 \cdot 2.33}$	$VM = \frac{100}{1 - 0.01 \cdot 3.09}$
uc = 2%	$VM = \frac{100}{1 - 0.02 \cdot 2.33}$	$VM = \frac{100}{1 - 0.02 \cdot 3.09}$
uc = 5%	$VM = \frac{100}{1 - 0.05 \cdot 2.33}$	$VM = \frac{100}{1 - 0.05 \cdot 3.09}$

$$VM = \frac{T_{U}}{1 - uc \cdot z}$$

Calculando a velocidade máxima permitida

• VM é a mínima velocidade medida para que se possa assegurar que menos de 1 autuação em 100 ($\overline{p_c}=0.01=1\%$) ou 1 autuação em 1000 ($\overline{p_c}=0.001=0.1\%$) será aplicada <u>erroneamente</u>

CASO A: $T_{\rm U} = 100 {\rm km/h}$	$\overline{p_c} = 1\% \rightarrow z = 2,33$	$\overline{p_c} = 0.1\% \Rightarrow z = 3.09$
uc = 1%	$VM \cong 102,4 \text{ km/h}$	$VM \cong 103,2 \text{ km/h}$
uc = 2%	$VM \cong 105,0 \text{ km/h}$	$VM \cong 106,6 \text{ km/h}$
uc = 5%	$VM \cong 113,2 \text{ km/h}$	$VM \cong 118,3 \text{ km/h}$

$$VM = \frac{T_U}{1 - uc \cdot z}$$

Fonte: BIMP JCGM 106:2012

"A VITÓRIA VEM DA LUTA A LUTA VEM DA FORÇA A FORÇA DA UNIÃO"

Rodrigo Costa-Felix

rpfelix@inmetro.gov.br

(21) 2679-9720 / (21) 99636-8586

21 2679-9741

www.asmetro.org.br

Bibliografia complementar